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Executive Summary

The cultivation of seaweed (macroalgae) is emerging in Australia and anticipated to grow in the
future. In response to this interest in industry growth, the Tasmanian Government has identified
a need to better spatially resolve the biophysical requirements and potential for marine-based
(coastal) seaweed aquaculture in waters off Tasmania. The intent is to inform local planning and
site selection to optimize production when needed. It is also meant to eventually better
understand how seaweed aquaculture could be embedded with existing marine industrial
activities, such as existing aquaculture and wastewater treatment, and non-industrial activities,
such as ecosystem restoration.

This report addresses biophysical conditions, constraints, and co-location with existing
aquaculture, as an initial indicator of potential, of 15 selected seaweed taxa of interest
determined by the Tasmanian Government. The report is divided into four sections:

o Description of the contemporary distribution of seaweed taxa of interest in Tasmania;

e Assessment of key biophysical attributes that may limit the siting of aquaculture of
seaweed taxa of interest, when known;

e Preliminary statewide spatial assessment of key biophysical attributes, including the
identification of data sources and gaps;

e Synthesis of ecological distribution and preliminary spatial assessment in nine discrete
areas around Tasmania to inform government planning. This includes considerations for
co-location with existing aquaculture.

KEY FINDINGS

The contemporary distribution of seaweed taxa of interest differed significantly with some very
common (e.g., Ecklonia radiata) and rarely observed (e.g., Cladophora vagabunda) taxa. The west
coast of Tasmania is poorly sampled and represents a clear data gap. The southeast of Tasmania
is the most ‘species-rich’ region, with all 15 seaweed taxa of interest observed. However,
sampling effort is also greatest in this region.

Biophysical constraints for the siting of coastal seaweed aquaculture in Tasmania includes water
temperature, exposure, light regime, and nutrient availability. Constraints on water temperature
and exposure are best understood for the taxa of interest, while information on minimum nutrient
and light requirements is sparser. Four taxa of interest are sensitive to temperature: Lessonia
corrugata, Macrocystis pyrifera, Durvillaea potatorum, and Ecklonia radiata.

Data sources for key biophysical variables are available for a preliminary statewide assessment,
albeit sometimes as proxies and at a coarse resolution. Coastal nutrient availability is a key data
gap; it is filled here by using hydrography coupled with land use. Water temperature and light
regime are estimated with remote sensing (satellite) data (presented as monthly averages), while
a proxy for exposure — openness derived from the geography of the coastline — is determined at
regular intervals along the coastline.

RECOMMENDATIONS

Relevant information is collated in this report with the purpose to inform future planning for the
development of coastal seaweed aquaculture in Tasmania. However, data gaps remain.
Recommendations to fill these gaps to further support planning include:



Resolving minimal and optimal conditions for growth for taxa of interest, ideally by
focusing on fewer taxa. It is noted this information is lacking for several taxa of interest,
and should include operational needs, which are not adequately captured by natural
distributions.

Identify priority areas of interest based on this research or other sources and conduct a
biophysical assessment at a higher spatiotemporal resolution, with available data.
Eventually, this would also include socio-economic context to inform planning.



Introduction

The cultivation of seaweed (macroalgae) is emerging in Australia. The industry is currently valued
at AUD$ 3 million - primarily from wild harvest — but is expected to grow in future decades, with a
potential valuation of AUD$1.5 billion by 2040 (Kelly 2020). This is anticipated to require a
significant expansion in the cultivation of seaweeds in Australian marine waters, including
Tasmania. Given its rich native diversity of seaweed (750 recorded species; Hurd et al. 2023) and
research capacity, efforts and interest to commercially cultivate seaweeds in Tasmania has
grown in recent years.

In response to this interest in industry growth, the Tasmanian Government has identified a need
to better spatially resolve the biophysical requirements and potential for marine-based seaweed
aquaculture in Tasmanian waters. This is intended to inform local planning and site selection to
optimize production when needed, and eventually, to better understand how seaweed
aquaculture could be embedded with existing marine industrial activities, such as existing
aquaculture and wastewater treatment, and non-industrial activities, such as ecosystem
restoration, in Tasmania. Despite growing interest in offshore cultivation (detailed in Visch et al.
2023), marine-based seaweed/macroalgae aquaculture is currently anticipated to occur in the
coastal zone. Similar exercises, albeit with different approaches and context, have been
conducted elsewhere in Australia (South Australia; Wiltshire and Tanner 2020), and overseas
(e.g., Tasnim et al. 2024, Visch et al. 2020).

In the present study, biophysical potential is addressed by determining the contemporary
Tasmanian distribution of seaweed taxa of interest, identifying environmental constraints that
may limit the siting of aquaculture sites, and identifying data sources and gaps to spatially map
these constraints at an appropriate scale and resolution. Importantly, this study does not aim at
this stage to optimize the siting of specific cultivated species. Rather, it aims to support the
identification of areas of interest that would later benefit from more detailed studies on site
suitability.

Tasmania currently hosts the largest aquaculture industry in Australia with a value of AUD$ 1.21
billion in 2021-22, dominated by salmonids (Tasmanian Agri-Food Scorecard 2021-22,
Department of Natural Resources and Environment Tasmania). It is therefore important to better
understand how existing aquaculture activities could benefit or support an emerging seaweed
aquaculture industry. Co-location can occur at varying degrees: from integrated sites (e.g.,
integrated multi-trophic aquaculture) to neighbouring leases to local or regional areas being
developed as part of a joint development strategy, for example to share resources and enhance
planning efficiency. In Tasmania, ongoing research and development is examining co-location of
salmonid aquaculture with seaweed. While integration is not the focus of this study, relevant
information is provided for later research to further examine the co-location potential of seaweed
and salmonid aquaculture in Tasmania.

This study focuses on 15 seaweed taxa of interest, two of which are not endemic to Tasmania
(Table 1). This suite of species was provided by the Tasmanian Government to support this study,
and may not at the time of writing represent the full suite of species with potential for commercial
marine-based aquaculture in Tasmania.



Table 1. Seaweed taxa of interest as specified by the Department of Natural Resources and Environment
Tasmania. ‘*’ denotes introduced/invasive species. ‘[]’ denotes other names used in Section 1 datasets.

Latin name Section 1 Type
Asparagopsis armata Asparagopsis armata Red
Caulerpa brownii Caulerpa brownii Green
Caulerpa geminata Caulerpa geminata Green
[Caulerpa sedoides var. geminata]
Chaetomorpha billardierii Chaetomorpha billardierii Green
Chaetomorpha coliformis Chaetomorpha coliformis Green
Cladophora vagabunda Cladophora vagabunda Green
Codium fragile subsp. novae- Codium fragile’ Green
zelandiae
Codium harveyi Codium harveyi Green
Durvillaea potatorum Durvillaea potatorum Brown
Ecklonia radiata Ecklonia radiata Brown (Kelp)
Grateloupia turuturu* Grateloupia turuturu* Red
Lessonia corrugata Lessonia corrugata Brown (Kelp)
Macrocystis pyrifera Macrocystis pyrifera [Macrosystis Brown (Kelp)
angustifolia; Macrocystis spp.]
Ulva lactuca var. lacinulata Ulva spp." [Ulva rigida; Ulva Green
australis]
Undaria pinnatifida* Undaria pinnatifida* Brown (Kelp)

1. Records of these species were not present in the datasets. Alternatives are used to estimate biophysical suitability.

This study is divided into four sections:

SECTION 1 describes the contemporary distribution of seaweed taxa of interest in Tasmania
(Table 1). This section collates existing datasets from databases as well as species occurrences
from the literature to coarsely determine the distribution of taxa of interest using contemporary
(i.e., since 2012) and historical (since the early 1980s) observations. A compilation of observed
taxa of interest among nine geographic regions in Tasmania is presented.

SECTION 2 determines the key biophysical attributes relevant to the siting of seaweed
aquaculture in Tasmania. While optimizing site selection is a core aspect of marine spatial
decision-support science, this section rather aims in a first instance to identify limitations that
would warrant consideration before identifying and developing sites. These limitations can be
either existing or anticipated, for example due to environmental change. This section relies on a
literature review to establish range of conditions - if known — for taxa of interest occurring in
Tasmania, Australia or overseas (with a preference for temperate ecosystems). This section also
uses when appropriate the occurrence data from Section 1 to further determine the ecological
niche of taxa of interest.

SECTION 3 presents a preliminary statewide spatial assessment of key factors relevant to the
siting of seaweed aquaculture in Tasmania. This section uses available datasets — often at a
coarser resolution than desired — to characterize biophysical conditions in Tasmanian waters.
Given the need for the statewide characterization, some datasets stem from satellite remote
sensing technology. In some cases, data from proxies are provided. Data gaps are detailed, as
well as potential avenues for further research to fill these data gaps in specific areas of interest
and at a higher spatiotemporal resolution. Finally, the spatial configuration of existing
aquaculture is considered in this section.



SECTION 4 summarizes findings from previous sections and presents a synthesis of ecological
distribution and preliminary spatial assessmentin Tasmania, divided in nine regions. This section
aims to collate available information by region to guide further research in examining key
biophysical factors — and eventually socio-economic factors — at a relevant scale.

Recommendations are included at the end of the study to guide future work, as needed.



SECTION 1: Contemporary distribution of seaweeds of interest in Tasmania

1.1 RATIONALE

The overall aim of this section is to better understand the contemporary distribution of 15
seaweed taxa of interest in Tasmanian waters (see Table 1). This effort is meant to guide
aquaculture siting in relation to wild populations (where relevant). This information is relevant to
managers who may not want species cultivated outside of their natural range, for example to
avoid unintended biological pollution in recipient ecosystems and protect genetic diversity.
Further, the section seeks to enhance our understanding of the biophysical drivers of the
distribution of the seaweed taxa of interest, including for non-endemic species where data
allows. Finally, the section identifies data gaps for poorly-resolved ecological distribution, or
areas likely to be under-sampled.

1.2 METHODS

DATA SOURCES

Available occurrence data of species of interest was extracted from the primary scientific
literature, grey literature (technical reports), and available databases (Table 2). The study area
included Tasmanian waters, and the temporal range extended from 1984 to 2021. Only in-situ
observations with a survey date were considered. A summary of the data sources is shown in
Table 2.

Some occurrence records were duplicated across different data sources, therefore pointing to
the same observations. To address this, sites less than 10m apart were labelled as the same site,
and at each site, observations occurring at the same time (survey date) were considered to be the
same observation.

Codium fragile var. novae-zelandiae did not occur in the dataset. However, occurrences of
Codium fragile are included here. Similarly, occurrences of Ulva lactuca var. lacinulata did not
occur; instead, we use records of Ulva spp. Ulva rigida and Ulva australis to estimate biophysical
suitability in Tasmania.

A total of 4931 observations of seaweed taxa of interest were collated across 568 unique sites in
Tasmania (Fig. 1). Out of the 568 sites, 214 have been visited since 2012. Most sites are
distributed along the south, east and north coast of Tasmania, with a clear data gap for most of
the west coast.

SYNTHESIS

Occurrences were collated and synthesized across nine regions covering the coastline of
Tasmania: southeast (Southeast Cape to Tasman Island), Tasman Peninsula (Tasman Island to
Cape Paul Lamanon), mid-east coast (Cape Paul Lamanon to Cape Sonnerat), north east coast
(Cape Sonnerat to Cape Portland), north coast (Cape Portland to Cape Grim), west coast (Cape
Grim to Port Davey), south coast (Port Davey to Southeast Cape), King Island, and the Furneaux
Group.
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Figure 1. Sites of occurrence data collected between 1984 and 2021 for the seaweed taxa of interest in
Tasmania (n = 568).

1.3 RESULTS

Most taxa were observed for most of the time period (1984 — 2021) with few exceptions, such as
Grateloupia turuturu, an introduced species, and Cladophora vagabunda (only one record in
2018; Table 3). Some species were observed at many sites: Ecklonia radiata (501 sites), Lessonia
corrugata (166 sites), Caulerpa brownii (170 sites), Macrocystis pyrifera (164 sites), and
Durvillaea potatorum (145 sites). Occurrence data (by site) for each species is provided in
Appendix 2.

Relatively more taxa were recorded in the southeast (all 15 taxa) and the mid-east coast (14 taxa;
Fig. 2). The Tasman Peninsula and west coast each had the lowest number of recorded taxa (7);
however, few sites on the west coast were included in this study (11) so it is likely this number
may be under-estimated. The north-east coast, south coast, and north coast each had either 11
or 12 species (Fig. 2).



Table 3. Number of observations and sites, and temporal range of observations of taxa of interest around

Tasmania.
Number of Number of Temporal
Taxa . .

sites observations range
Asparagopsis armata 74 167 1994 - 2021
Caulerpa brownii 173 571 1992 - 2021
Caulerpa geminata 92 448 1992 - 2021
Chaetomorpha billardierii 21 51 1994 -2020
Chaetomorpha coliformis 63 105 2006 - 2021

Cladophora vagabunda 1 1 2018
Codium fragile 67 82 1992 -2019
Codium harveyi 34 101 1994 - 2021
Durvillaea potatorum 145 319 1984 - 2021
Ecklonia radiata 505 1852 1984 - 2021
Grateloupia turuturu 5 7 2009-2020
Lessonia corrugata 167 403 1992 - 2021
Macrocystis pyrifera 164 343 1984 - 2021
Ulva spp. 95 368 1992 - 2021
Undaria pinnatifida 36 113 1992 - 2019
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Figure 2. Summary of occurrences recorded in this study for 15 seaweed taxa of interest in Tasmania (1984
—2021). Occurrences for individual taxon are presented in Appendix 2. Areas are for visualization purposes
only.
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SECTION 2: Key biophysical attributes

2.1 RATIONALE

The distribution and abundance of seaweeds is influenced by wave exposure (hydrodynamics),
suitable substrate, water temperature, light regime (specifically, photosynthetically available
radiation — PAR), nutrient availability, and other aspects of water chemistry (e.g., dissolved CO,).
(see Hurd et al. 2014). Defining ecological niches in wild populations are relevant but not
sufficient to understand conditions for aquaculture. Other considerations related to biophysical
conditions of a given geographic area that could influence operations include for example seabed
depth, distance to shore, weather patterns (e.g., for ongoing maintenance and site access),
production levels for financial sustainability, biosecurity and influence of pathogens, and
interspecific interactions in multi-species cultivation systems. It is important to include such
considerations; however, given the level of practical experience required to address these, they
may best be defined on a taxon-by-taxon basis at higher spatial resolutions within restricted
geographic areas.

Here, the focus is on biophysical variables that could be included in a spatially-explicit (GIS-
based) decision-support system to support holistic site selection for aquaculture (as per
Sanchez-Jerez et al. 2016, Falconer et al. 2019). The aim is to describe known biophysical ranges
for the 15 seaweed taxa of interest based on field observations or laboratory studies for these
biophysical variables, and hence identify potential constraints or limits to cultivation in
Tasmania. This exercise is not meant to optimize the allocation of space, ‘site suitability’ for taxa
of interest, or estimate production potential.

When determining biophysical constraints, it is critical to identify the relevant life-history stage
for each species or taxon of interest that would be cultivated at sea. This differs among taxa of
interest and a comprehensive review of established or emerging cultivation methods is beyond
scope for this study. Instead, the focus is on environmental conditions meant to inform
cultivation at sea.

As a preliminary assessment, biophysical variables under consideration include water
temperature, exposure, light regime, and nutrient availability. This is based on variables
known to impact the natural distribution of taxa of interest in Tasmania (e.g., Butler et al. 2020a,
Hurd et al. 2023, James et al. 2024).

2.2 METHODS

INSIGHTS FROM OCCURRENCE DATA

Occurrence data for the 15 seaweed taxa of interest were recorded at 568 unique sites in
Tasmania (Section 1, Fig. 1). This provided an opportunity to further infer biophysical ranges for
the taxa of interest. Given the significant temporal variability of observations (1984-2021), only
the geographic static exposure index of ‘openness’ was calculated to further examine the
relationship of each taxon of interest to exposure (based on Hill et al. 2010).

Openness is an index of exposure reflecting the geography of the coastline. Openness is
calculated by measuring the total distance (up to 650 km) to the nearest land mass along 48
bearings around a point of interest. The index is expressed as a fraction [0-1] based on the
maximum theoretical total distance (here: 48 x 650 km) and is used as a proxy to contrast
sheltered environments (relatively lower values) against exposed environments (relatively higher
values). Openness was calculated at all 568 unique sites and summarized across taxa of interest
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based on their occurrence. Importantly, openness is a simple index of exposure. More refined
analyses would include wind patterns, fetch and bathymetry for more specific exposure regimes
at given sites of interest.

LITERATURE REVIEW

A systematic literature review was conducted to determine the environmental range under which
the taxa of interest occur for the biophysical variables of interest: water temperature (thermal
tolerance), exposure (hydrodynamics and wave action), light availability (e.g., photosynthesis-
irradiance relationships), and nutrient availability (e.g., minimum concentration of nutrients). The
review was based on the primary scientific literature and grey literature (reports), when relevant.

EXPERT OPINION

Experts at the Institute for Marine and Antarctic Studies were consulted to identify the realized
ecological niche of the taxa of interest. Experts were asked to estimate the temperature range at
which taxa occur, the relationship with exposure (exposed, moderate, sheltered or mixed), and
their nutrient-level requirements when known. It was highlighted that interactions among these
factors are important to consider when assessing biophysical suitability. Our focus was however
to identify limitations to the taxa’s distribution, not at this stage optimize siting for growth.

1.3 RESULTS

Calculations of openness indices across all 568 sites (range: < 0.001 - 0.49) revealed a gradient
in biophysical niche occupied by the 15 taxa of interest (Fig. 3). Species observed at the most
‘exposed’ sites (mean: 0.16-0.20) included Durvillaea potatorum (mean: 0.20) and Lessonia
corrugata (mean: 0.16). Species observed at mostly moderate sites with some occurrences at
exposed sites (mean: 0.06-0.09) included Ecklonia radiata, Macrocystis pyrifera, Caulerpa
brownii, and Grateloupia turuturu. Species mostly found at moderate sites (mean: 0.02-0.03)
included Codium fragile, Ulva spp., and Chaetomorpha coliformis. Species predominantly found
at sheltered sites (mean: 0.01-0.02) included Asparagopsis armata, Undaria pinnatifida, Codium
harveyi, Chaetomorpha billardierii, and Caulerpa geminata. Cladophora vagabunda was
observed at only one (sheltered) site.

Known biophysical ranges based on the literature review, expert opinion and insights from
occurrence data (openness index of exposure) are summarized in Table 4. Importantly, this review
may not be comprehensive - i.e., other sources may exist but have not been uncovered in this
exercise.

Biophysical range could not be determined for all taxa of interest for all biophysical variables.
Notably, information on nutrient requirements and nutrient uptake kinetics (and preference) is
poorly resolved in this study, as well as requirements for light regime. The latter data gap has been
noted by Hurd et al. (2023) for Tasmanian seaweed species. Information on these variables was
restricted to taxa already developed for aquaculture (e.g., Undaria pinnatifida).

Relationships with exposure and currents is available for all taxa, at a minimum derived from
insights from the occurrence data in this study and expert opinion. Similarly, information on
thermal tolerance is available for most taxa, with some exceptions. Based on this information, at
least four taxa are likely to be stressed by warmer temperature (i.e., > 20-22°C): Durvillaeca
potatorum (restricted to southeast Australia; Visch et al. 2023), Ecklonia radiata (no sporophytes
developed above 22°C; Mabin et al. 2019), Lessonia corrugata (critical thermallimit ~22°C; expert
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opinion), and Macrocystis pyrifera (critical thermal limit for adult sporophyte: ~20°C; expert
opinion).

Sheitered Exposed
>

Durvillaea potatorum-| 4' I I

Taxa

Chaetomorpha coliformis

Asparagopsis armata-
Undaria
Codi

Chaetomorpl

0.1 02 0.3 0.4 05
Openness

Figure 3. (Boxplots) Range of openness indices for each taxon of interest based on 568 sites in Tasmania.
Number of observations per taxon is provided in Table 3.

Nutrient requirements were the least readily defined in the literature, particularly for production
and in the context of this study identifying constraints on seaweed aquaculture. For a few
species, e.g., Ecklonia radiata and Macrocystis pyrifera, laboratory experiments provided
estimates of minimum (lower) estimates of nutrient (nitrate) concentrations. However, in several
studies, ‘low’ concentrations of nitrogen (often nitrate or nitrate-nitrite) differed significantly -i.e.,
from < 1 to 5-7 uM — making it difficult to estimate this lower limit in relation to ambient natural
concentrations in Tasmanian waters.

This review aimed to identify individual biophysical constraints to inform geospatial modelling.
However, interactions do occur and modelling these relationships will be important to estimate
optimal conditions for marine-based seaweed aquaculture. For example, enriched waters (i.e.,
relatively higher nutrient concentration) may dampen the effect of warmer waters in influencing
growth and photosynthesis for Undaria pinnatifida and Macrocystis pyrifera (Fernandez et al.
2020, Gao et al. 2012).
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SECTION 3: Preliminary spatial assessment of biophysical variables and data
gaps
3.1 RATIONALE

Based on findings from previous sections, the aim of this section is to determine the spatio-
temporal variability of biophysical constraints on seaweed aquaculture. This exercise is not
meant to optimize siting because of its coarse resolution and lack of clear understanding of
optimized growth conditions for several taxa. Instead, it is meant to guide further assessment at
finer scales in areas of interest.

A coarse statewide assessment of relevant biophysical variables is presented; variables are
directly mapped when available or proxies are used. It is important to note the focus is on coastal
aquaculture; however, no explicit consideration has been made to restrict biophysical
assessments to Tasmanian State waters. Instead, the purpose is to show coarse biophysical
patterns, and in some cases, may extend offshore to demonstrate the general biophysical regime
of select areas. Where relevant, data gaps are identified, and potential sources of data are
identified to fill these data gaps in the future, particularly at a finer resolution in areas of interest.

This section also examines the potential for co-locating seaweed aquaculture with existing
aquaculture in Tasmania, namely finfish aquaculture.

A synthesis of the distribution of seaweed taxa of interest and conditions of biophysical
constraints is presented in Section 4.

3.2 METHODS

KEY FACTORS

Key biophysical variables influencing the siting of seaweed aquaculture are identified from
previous sections. These include:

o Temperature: some seaweed taxa of interest are vulnerable to warm water temperature
—e.g., Macrocystis pyrifera, Lessonia corrugata. A conservative approach examines mean
and maximum observed temperature in an area (identifying waters > 20°C). Temperature
varies spatially (along latitudinal gradient and under the influence of major ocean
currents), and temporally (daily to seasonally).

e Exposure: Exposure relates to wave action and water movement. Optimal conditions for
seaweed growth differ among taxa, i.e., sheltered to moderate to exposed environments.
Exposure can vary spatially (e.g., geography of the coastline), and spatio-temporally
(coastline and wind patterns). At a coarse scale, the assessment in this study examines
the geography of the coastline (openness) as an indicator of suitability.

e Light availability: As primary producers, seaweed relies on light availability for growth.
Light availability differs spatially (latitudinal gradient), and temporally, from diurnal
patterns (day-night), to seasonal patterns. It is noted also that while studies have
examined seaweed distribution in-situ on the seabed, seaweed aquaculture may occur
closer to the surface (but not necessarily at the surface, i.e., the air-sea interface).
Laboratory studies demonstrate the relationship between light availability and seaweed
growth. Light penetration is influenced by reflection and refraction in the water column
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(turbidity) and varies spatiotemporally along coastlines due to terrestrial and marine
sources of organic and inorganic load, re-suspension and mixing, and the presence of
organisms, such as phytoplankton cells. In the context of this study, light availability at
the surface - for example, Photosynthetically Available Radiation (PAR) — coupled with
estimates of light attenuation in the water column can provide reasonable proxies of light
conditions prior to infrastructure deployment (e.g., baseline conditions).

e Coastal nutrient availability: Nutrient availability is a key biophysical constraint limiting
marine-based (coastal) seaweed aquaculture. Nutrients in the coastal zone can originate
from terrestrial sources through coastal run-off and riverine discharge (catchment run-
off), wastewater treatment, marine-based industrial activities (e.g., finfish aquaculture),
and marine sources from upwelled nutrient-rich waters. In the context of this study, two
pathways for nutrient availability are investigated:

1) hydrography of Tasmania, namely the networks of rivers embedded in water
catchments and coupled with population density and land use. Hydrography
can also further be used to investigate spatio-temporal patterns in salinity,
an important biophysical constraint not directly investigated in this study;

2) Presence of finfish aquaculture as a source of nutrients (excess nitrogen) to
seaweed aquaculture.

A preliminary biophysical assessment of suitable conditions for the cultivation of the seaweed
taxa of interest is presented here. The assessment uses data, when available, at the scale of
Tasmania; higher-resolution data may exist, and it is recommended a targeted biophysical
assessment at a higher resolution be conducted in areas of interest.

Importantly, the assessment does not explicitly consider interactions among biophysical
constraints. For example, while proximity to river discharge may enhance nutrient availability, it
also increases turbidity which may limit light availability. Similarly, high nutrient availability can
curb sensitivity to warmer waters in some taxa (Fernandez et al. 2020).

DATA SOURCES

Temperature at the sea surface (sea surface temperature; SST) was based on satellite
observations available on the Australian Ocean Data Portal hosted by the Integrated Marine
Observing System (IMOS; imos.org.au). For this analysis, the dataset used was a Level 3S day-
night, ‘foundation’ SST values derived from multiple sensors and averaged over a 72-hour period.
Daily means are gridded at ~0.02° x 0.02° and represent the average of the highest quality values
of SST over the 72-hour period. Values were adjusted for Sensor Specific Error Statistics (SSES)
bias as recommended by the Group for High Resolution Sea Surface Temperature (GHRSST;
values are available in the data files). Data were obtained for the period of 1 January 2014 to 31
December 2023. ‘Foundation’ data aim to represent ambient temperature at a depth of ~10m to
account for the variability in the diurnal warm layer. Foundation SST is derived from skin SST by
rejecting observations with low wind speed during the day and night, therefore removing grid cells
that could have been impacted by diurnal warming.

Exposure data was estimated with geographic openness (methods are provided in Section 2).
Openness was estimated at individual points 50 m off the coastline and equally spaced at 2-km
intervals (n = 3296 estimates of openness around Tasmania).
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Light availability in waters around Tasmania was estimated with available data on surface
irradiance photosynthetically available radiation (PAR; 400-700 nm) and average attenuation
coefficient of irradiance in the euphotic zone (i.e., surface to depth where ~1% of surface
irradiance remains). Average attenuation coefficients (Kpar; m”) estimated from satellite data
were provided by Gattuso et al. (2020) as global monthly climatologies. This dataset processed
satellite data from several platforms from 1998 to 2018 at a resolution of 1/24°. Gattuso et al.
(2020) provides both PAR at the surface and at the bottom (in mol photons m2d™) and Kear. This
value is integrated from sunrise to sunset. Average attenuation coefficients are modelled from
average chlorophyll a concentration derived from satellite ocean colour in ‘Case 1 waters’ where
phytoplankton is hypothesized to be the main contributor to light attenuation. However,
attenuation coefficients in ‘Case 2 waters’ where turbidity is due to factors other than
phytoplankton concentration cannot be as generally modelled as in ‘Case 1 waters’. Instead, the
presence of ‘Case 2 waters’ is analytically inferred using water reflectance at 555 nm; grid cells
identified as ‘Case 2 waters’ are removed from data products. Empirical observations are needed
in such cases.

Here, monthly climatologies of surface PAR and Kparare used to estimate irradiance (PAR) at 3m
depth (i.e., PARs») throughout the year. Areas where the seabed depth is less than 3m were
removed. Seabed depth was derived from the AusBathyTopo 250m (Australia) 2023 Grid
(resolution: 0.0025°; data available from Geoscience Australia at portal.ga.gov.au). This is meant
to illustrate the spatiotemporal variability of light availability at a given depth (or the seabed)
around Tasmania; acquiring data at a higher temporal and spatial resolution is recommended in
specific areas of interest, and a vertical profile of irradiance can be derived for each grid cell if
needed. PAR;is computed as followed (based on Gattuso et al. 2020):

PAR, = exp (—Kpyp X z) X PARsurface
where z = depth (3 m below the surface).

Because of the coarse temporal resolution, these data should be considered estimates only.
Gattuso et al. (2020) provides estimates of PAR irradiance at the bottom. Using these data, it is
inferred a slight bias occurs, i.e., the estimates from monthly climatology (rather than daily) may
slightly overestimate irradiance.

Coastal nutrient availability is not currently adequately described in Tasmania at an appropriate
resolution relevant to support a state-wide assessment for the siting of marine-based seaweed
aquaculture. Tasmanian waters are generally considered oligotrophic (Hurd et al. 2023). Below
are estimates of coastal and shelf nutrient concentration:

o Mercury Passage (nitrate): ~0.80 pM maximum values observed at the surface and bottom
(Winter 2020); overall time period surveyed: August 2017-2021; values in uM are converted
from available values provided in mg/L using the molecular weight of nitrate; EPA Tasmania
(2021)

o Okehampton Bay (Mercury Passage; nitrates): mean 2.5 + 1.3 yM (max: 5.1 pM); March-
November 2020; Visch et al. (2024)

o Maria Island National Reference Station: maximum values of ~5 uM (surface; 0-10 m) and
~10 pM (bottom; > 50m), with annual averages at the surface ranging from ~0.5-2.0 yM.
Peak concentration at the surface (~0-30m) in winter; peak concentration at depth (below
~30m) in summer; Butler et al. (2020b)
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o Port Arthur (Tasman Peninsula; nitrate): ~0.32-0.57 pM (maximum values observed at the
surface and bottom (May and March 2022, respectively); overall time period surveyed:
October 2021 - May 2022; values in uM are converted from available values provided in
mg/L using the molecular weight of nitrate; Environment Protection Authority (2022)

o Great Taylor Bay (southeast; south D’Entrecasteaux Channel): mean 2.3+1.2 yM (max: 5.8
HM); March-November 2020; Visch et al. (2024)

o Tower Bay (southeast; south D’Entrecasteaux Channel): mean 2.3 £ 1.0 ygM (max: 4.1 pM);
March-November 2020; Visch et al. (2024)

o Derwent Estuary (southeast): close to 0 (in summer) to 1-1.45 pM (in winter, lower values
at the mouth of the Derwent); bottom water measurements January 2010 to April 2020;
estimated from NOy pg L™ with nitrate molecular weight; Raes et al. (2022)

Nutrient availability in the coastal zone can originate from terrestrial and marine sources, either
through natural processes or from anthropogenic activities and at times stressors. In Australia,
coastal waters are typically ‘low in nutrients’ but availability is enhanced at times due to
anthropogenic nutrient pollution (Clarke et al. 2021). Among other sources, river discharge is a
key mechanism of input of nutrients into the coastal zone, and nutrient load inrivers is influenced
by natural processes (e.g., precipitation, weathering) and anthropogenic factors (e.g., land use
affecting run-off, industrial activities, wastewater treatment).

Tasmanian coastal waters are naturally influenced by two major sub-tropical ocean currents —
the East Australian Current and the Zeehan Current — mixing with sub-Antarctic water, and their
interaction with river discharge (Cresswell 2000, Cherukuru et al. 2014). Sources of
anthropogenic nutrient loading include urban and rural run-off, point discharges from (terrestrial)
industry, wastewater treatment plants and organic loading from finfish aquaculture (Clarke et al.
2021).

In the context of this study, information is provided about potentially relevant proxies of coastal
nutrient availability. The focus is predominantly on terrestrial sources, although qualitative
descriptions of the influence of major oceanic processes around the state are included in the
synthesis (Section 4). Spatial information on potential terrestrial sources is meant to provide a
coarse overview of the hydrology of Tasmania. It is necessary to investigate further in specific
regions, as needed. Hydrography (rivers, minor rivers, and major rivers) is coupled with
population density and land use over catchment areas, as well as the presence of finfish
aquaculture as a marine-based source of nutrients.

SYNTHESIS

Information is synthesized by season where applicable (e.g., temperature, light availability).
Monthly values are provided in Appendices 3 (temperature) and 4 (light availability).

3.3 RESULTS

TEMPERATURE

Seasonal patterns in maximum and average sea surface temperature between 1 January 2014 to
31 December 2023 are shown in Figure 4. Monthly patterns are provided in Appendix 3.

Maximum and average sea surface temperature is warmest in summer (December — February),
with the warmest average recorded in waters near the Furneaux Group (16.3°C; Fig 4a). As
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expected, a clear latitudinal pattern in temperature is apparent, with coolest temperatures
observed in the southeast (average of 14.1 °C in summer, Fig. 4a). The coldest maximum
temperatures were observed in the D’Entrecasteaux Channel, northern Storm Bay, the Derwent
Estuary, and Frederick-Henry Bay/Norfolk Bay in winter. Cooler temperatures are observed in
winter and spring (Fig. 4c, 4d).

Observed maximum temperatures above 20°C over the 10-year period occurred in summer from
the western side of Storm Bay in the southeast to the northwest of Tasmania, including the
Furneaux Group (Fig. 4a). Maximum temperatures above 20°C were also observed in autumn,
albeit over a more restricted spatial extent than in summer, most of which largely confined to the
northernmost part of the east coast, the north coast and the Furneaux Group (Fig. 4b).

EXPOSURE
Spatial patterns of openness as a proxy for exposure are presented in Figure 5.

Relatively small values of openness - i.e., sheltered environments — are computed in sheltered
bays, estuaries and along complex coastlines (Fig. 5). The southeast region had overall the
smallest mean value of openness (0.05; Fig. 6), with semi-enclosed waters and bays in the north
of the D’Entrecasteaux Channel, the Derwent Estuary, and Norfolk Bay. Intermediate values of
openness in the southeast are located in the southern D’Entrecasteaux Channel, Storm Bay, and
exposed lower Derwent Estuary. Other areas with a significant proportion of coastline (40-60%)
in sheltered environments occur in the mid-east coast, the north coast (Tamar Estuary and
Robins Passage), and the south coast (Port Davey). Macquarie Harbour is a large relatively
sheltered environment in the otherwise highly exposed west coast.

Intermediate values of openness were common along the north coast, mid-east coast and
Furneaux Group (Fig. 5).

High values of openness - i.e., ‘exposed’ environments — were determined along the west coast
off the Tasman Peninsula, and the north east coast (Fig. 5). Exposed environments are also
common on the south coast and southern tip of Bruny Island in the southeast. Highest mean
value of openness was calculated off the Tasman Peninsula (0.24; Fig. 6) with second highest
being King Island (0.23; Fig 6).
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Figure 4. Maximum sea surface temperature (SST; ‘foundation’ temperature obtained via satellite) within
10 km of the coast of Tasmania from 1 January 2014 to 31 December 2023. Hashed lines indicate areas
where maximum temperature is greater than 20°C. Also shown are mean temperatures within nine areas
(see Figure 2). (a) Summer: December — February; (b) Autumn: March — May; (c) Winter: June — August; (d)
Spring (September — November).
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Figure 6. Relative frequency of openness measured 50m off the coast at 2-km intervals in nine areas
around Tasmania (see Figure 5).

LIGHT AVAILABILITY

Seasonal patterns in average photosynthetically available radiation (PAR) estimated at 3m below
the surface from monthly climatologies of PAR and Kpar (1998-2018; Gattuso et al. 2020) are
provided in Figure 7. Monthly patterns are provided in Appendix 4.

As expected, higher average PAR is observed in summer, with highest irradiance expected along
the north coast, the Furneaux Group and King Island (Fig. 7a). Second-highest averages are
observed in spring (Fig. 7d). Winter displays the lowest irradiance (Fig. 7c).

Lower irradiance is observed in all seasons in some nearshore areas, particularly the southeast
region in the Derwent Estuary and D’Entrecasteaux Channel. It is hypothesized ‘Case 2 waters’ -
where the main factor influencing light attenuation is not phytoplankton — are present in this
region, more so in winter (Fig. 7c) but also in autumn and spring in the northern part of the
D’Entrecasteaux Channel (Fig.7b,d). ‘Case 2 waters’ also seem to occur along the south coast,
and throughout the year in Macquarie Harbour.
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Figure 7. Photosynthetically Active Radiation (PAR; mol photons m2d™) estimated at 3m below the surface
based on monthly climatology (1998-2018) of surface PAR and average attenuation coefficients Kpar (Mm™)
using datasets provided by Gattuso et al. (2020). Shown in grey are areas where seabed depth <3m; shown
in orange is inferred ‘Case 2 waters’. (a) Summer: December — February; (b) Autumn: March — May; (c)
Winter: June — August; (d) Spring (September — November).
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COASTAL NUTRIENT AVAILABILITY

Hydrography is used in the context of this study as a proxy to highlight potential for coastal
nutrient availability. Major rivers, rivers, and minor rivers are shown in relation to water
catchment areas in Tasmania in Figure 8. Population density is shown in Figure 9, while land use
is shown in Figure 10.

Major rivers in Tasmania include the River Derwent and Huon River (discharge in southeast area),
the Gordon/Franklin Rivers (discharge in west coast area — Macquarie Harbour), Arthur River
(discharge into northern west coast), and the South Esk River, fed by the Macquarie and Meander
Rivers (discharge into north coast — Tamar Estuary). Along the north coast, other major rivers
include River Forth and Mersey River flowing to Leith and Devonport, respectively. On the eastern
side of the north coast, major rivers include the Great Forester River and Ringarooma River.

Major rivers do not discharge into the east coast, but several smaller rivers connect to the coast
in this region (e.g., Meredith River, Prosser River, Scamander-Douglas River). Similarly, no major
rivers discharge into the south coast and southern west coast. There are no major rivers on King
Island and the Furneaux Group, and off the eastern coast of the Tasman Peninsula.

Population density is concentrated in the Hobart region in the southeast, and Launceston, at the
head of the Tamar Estuary. Other smaller urban centres are located along the north coast (Fig. 9).
A similar pattern is observed for intensive land uses (Fig. 10).

Agricultural land use is closely co-located with the networks or major rivers and rivers. Much of it
is concentrated south of Launceston in the midlands, and connected to the Tamar Estuary via the
South Esk, Macquarie and Meander Rivers. The joint Clyde River and River Derwent north of
Hobart, along with catchments of the Jordan and Coal Rivers, also host (largely dryland)
agriculture. Irrigated agriculture and plantation are common along the northwest coast.

Existing finfish aquaculture can be a source of nutrients for seaweeds. Most of Tasmania’s finfish
aquaculture marine leases (primarily for Atlantic Salmon) are located in the southeast region.
Some marine farming leases are currently licensed for both finfish and selected seaweed species
(Macrocystis pyrifera, Lessonia corrugata, and Ecklonia radiata) in the southern D’Entrecasteaux
Channel, Northwest Bay, Crooked Billet Bay and Port Arthur. One additional lease is licensed in
Mercury Passage (with the addition of Ulva lactuca as seaweed).
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Figure 8. Hydrography of Tasmania (major rivers, rivers, and minor rivers) and water management regions
(hydrogeological catchment areas).
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(major rivers, rivers, minor rivers). Boundaries of catchment area are shown in dark green.
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Figure 10. Land use (2021) in Tasmania shown with hydrography (major rivers, rivers, minor rivers). Also
shown are boundaries of water management regions (catchment areas).
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FILLING DATA GAPS

Clear data gaps remain to fully understand biophysical constraints and optimal conditions for the
siting of aquaculture for seaweed taxa of interest. In addition to resolving optimal biophysical
conditions —through laboratory or field experiments — gaps remain to systematically assess these
conditions in Tasmania. Critically, biophysical variables employed in this study are coarsely
spatially resolved and/or proxies of underlying key biogeochemical processes (e.g., hydrography
and influence of oceanic currents for coastal nutrient availability). A key step forward is to
enhance spatiotemporal resolution of data in areas of interest. Avenues to fill these gaps - and
particularly at a finer spatiotemporal scale — are detailed below.

1) In-situ samples for assessment and ground-validation:
e  Temperature (vertical profile and time series)
e Lightavailability

2) Monitoring for sporadic but consequential events:
e  Precipitation and flooding events
. Marine heat waves

3) Exposure: Wind patterns in areas of interest
° Detailed time series either from wind/wave models or wind stations

4) Light availability and coastal nutrient availability: High-resolution time series of
turbidity and primary production
In areas of interest, it is recommended the approach employed be complemented with
higher-resolution satellite imagery, and potentially refined to estimate irradiance at a
depth of interest. Imagery collected with the Multispectral Instrument (MSI) aboard
satellites Sentinel-2A and Sentinel-2B (European Space Agency) could be a valuable
source of information in areas of interest to infer turbidity, and hence light availability at
depth of interest over the growing period. Data are available at a high-resolution (10, 20,
60 m) as a cohesive Analysis Ready Data package as standardised surface reflectance
data from Digital Earth Australia (knowledge.dea.ga.gov).
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SECTION 4: Spatial synthesis of distribution and biophysical conditions

This section provides a synthesis of occurrence data (from Section 1) and a preliminary
biophysical assessment (Sections 2 and 3) in nine geographic areas around Tasmania.

The information provided includes:

Observed seaweed taxa of interest (and number of sites at which they have been
observed).

Descriptive statistics on water temperature derived from sea surface temperature
(detailed in Section 3): annual range (average by month) and whether maximum
temperature above 20°C have been observed

Qualitative description of exposure based on spatial variability of (quantitative)
openness indices

Spatial variability in light availability at 3m below the surface and descriptive statistics:
annual range (average by month) and if and where ‘Case 2 waters’ have been observed
at any time during the year

A qualitative assessment of hydrography (rivers connecting to the coast), coastal land
use and summary of coastal population density to support further research on spatio-
temporal variability of coastal nutrient availability (from terrestrial sources). This also
includes where available information on the influence of oceanic currents.

Marine farming leases currently licensed for finfish only, finfish and seaweed, oysters
and seaweed, and seaweed only.
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Summary and recommendations

This study presents a preliminary assessment of the biophysical conditions and potential for
selected seaweed taxa for aquaculture in Tasmania. This included providing details on:

Contemporary distribution in Tasmanian coastal waters of 15 seaweed taxa of interest for
sea-based cultivation;

Ecological knowledge on constraints and limiting factors influencing the distribution of
these taxa in natural environments (or tested in laboratory conditions) that could
influence the siting of seaweed aquaculture in Tasmania;

Available spatial information - largely from remote sensing data products - that could
inform decision-making for seaweed aquaculture siting, and identifying avenues to fill
data gaps, if needed;

Relevant information for the siting of seaweed aquaculture synthesized in nine regions in
Tasmania.

The synthesis of conditions by regions revealed contrasts and similarities:

The southeast of Tasmania is a seaweed-rich, generally cold, moderately exposed
environment with extensive sheltered areas, with probable pulses of nutrient-rich
waters (in winter, from marine and terrestrial sources). However, the region is impacted
by high river discharge, high population density, and intensive land uses, which may
sporadically reduce light availability. Finfish aquaculture also occurs most commonly
in the southeast, particularly in Storm Bay and the D’Entrecasteaux Channel.

The east coast is seaweed-rich, cool region vulnerable to sporadic warming,
moderately exposed to exposed region — particularly off the Tasman Peninsula and the
northern east coast. Major rivers do not flow in the east coast, which likely makes water
generally clearer, except for Georges Bay. Nutrient loading largely depends on oceanic
sources.

The Furneaux Group is a relatively warmer region clearly vulnerable to sporadic
warming, particularly in summer and autumn, moderately exposed coast facing Bass
Strait, and relatively less dense land use.

The north coast is a relatively warmer region clearly vulnerable to sporadic warming,
particularly in summer and autumn, moderately exposed coast facing Bass Strait. The
region is extensively dominated by dryland and irrigated production along its coast
and several major rivers, including the Tamar Estuary. Intensive land use occurs,
particularly from the mouth of the Tamar Estuary to Burnie. Light availability may be
impacted by river discharge, but likely concentrated at the mouth of the major rivers.

King island is a relatively cooler environment despite its latitude, with exposed
environments for most of its coastline, dryland and irrigation with restricted intensive

land use.

The west and south coast are cooler, exposed environments with sporadic sheltered
areas (e.g., Macquarie Harbour, Port Davey). Several major rivers flow in the west and

41



south coast from the wet protected and natural environments dominating the coastal
zone. Poorly populated area, with light availability likely impacted by heavy river
discharge in sheltered areas (e.g., Gordon River flowing into Macquarie Harbour).
Seaweed richness is under-sampled along the west coast. Macquarie Harbour hosts
finfish aquaculture; however, ‘Case 2 waters’ are found throughout most of the harbour at
least once during the year. This may limit light availability for seaweed cultivation.

RECOMMENDATIONS

This study is meant to provide a preliminary assessment of the biophysical conditions and
potential for seaweed aquaculture in Tasmanian coastal waters, with consideration for co-
location with existing aquaculture, such as finfish. Caveats remain to fully assess this potential,
noting further steps may not need to be conducted at a state-wide scale. Three main
recommendations to augment this present study are provided below:

1)

Information on suitable environmental conditions for the cultivation of several seaweed
taxa of interest was lacking. For some species, information was available in their natural
habitat (albeit not always in Tasmania), while environmental requirements or niche for
some taxa was lacking or could not be readily found for this study. Other taxa — such as
Undaria pinnatifida — were better resolved because of overseas experience in cultivation.
This is to be expected for emerging cultivated species in Tasmania. However, it is needed
to better resolve limiting and optimal environmental conditions for several of the
seaweed taxa of interest. Two additional considerations are added here:
a. There is a need for a more detailed assessment of operational needs and
requirements.
b. Itis suggested to focus on fewer taxa of interest. Fifteen taxa were considered
which can dilute the effort to focus on key taxa for which opportunities are more
obvious in the short-to-medium term.

This assessment was a coarse state-wide overview of biophysical constraints. In this
context, data provided is coarse, since finer-scale data collation is time-consuming and
may ultimately not be needed. It is therefore important to identify priority areas of
interest, and in these areas increase spatiotemporal resolution of key variables of
interest:
o Temperature: in-situ monitoring particularly for sporadic events, such as marine
heat waves if relevant
o Exposure: augment openness data with high-resolution wind or wave data
o Light and nutrient availability:
= [n-situ monitoring to uncover light and nutrient regime
= Higher-resolution satellite data products in areas of interest
= Further refine hydrographic analysis with precipitation, catchment use,
and river flow discharge data

This assessment focused on biophysical environments only. A necessary step to fully
understand potential is to couple biophysical information with socio-economic
considerations and other ocean uses, including but not limited to the presence of finfish
aquaculture.
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APPENDIX 2 - Distribution of seaweed taxa of interest in Tasmania

Data derived from 568 sites between 1984 and 2021. Data are segregated before and 2012 and
number of sites where the taxon was observed is specified.
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APPENDIX 3 — Monthly sea surface temperature in Tasmania (2014-23)
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APPENDIX 3 (continued)

s
.
/f:”f{
L Es
-
e
/‘f:/VT\
o

=)

I

L9 L
¥
] [ [
n )
o __ ™ o __ ™
N N
< <
; Mean temperature (°C) \\ _ Mean temperature (°C) \\
w w
e — M 19 - - M —
<+ _ ~
T s IR G
. BN Km AN | EEEN 1 Km
Y
-~ 0 60 120 ~ @ H _0 60 120 @
\‘\\T\?I'\I‘ IIIII ‘\\\\II'I!II\!V\’\A; I'IIT\:\\\‘\\\\I'III|\I\ V\I\llllrlg
l].‘M»“E 1|45°E 14|6°E 147|°E 148“IE 149"EI I].44"E 1‘45°E 14\6°E 147\°E 148"[E 149°E
d N r 1| N
o July A- ¢ August Al
~ Y L B () F
- Cvj C L “ 1 (, \ 4 L
iy I ( P _, I
o k*\ _ (m K}L\j [
= ( = L £l
¥1 & I 4 “a [
] : -
o [ ] [
g L <
L [
0 L g L
& < -5
] L]
_ Mean temperature (°C) Foon Mean temperature (°C)
g__ L T) — r&* ™19 R N
< L ]
K L (e
EEEN Km L . I Km
_0 60 120 3 -0 60 120 [
e B B e e e e i L HLA e L A L
144°F 145°F 146°E 147°F 148°F 149°F 144°E 145°E 146°E 147°E 148°E 149°E

52



APPENDIX 3 (continued)

ol e b b e b

$_ September
- ~Y
- j QL}\QJ
4 ¢ ®D -
o | \ § [\W
¥, (& L{ 1
0! :-_b/ )
o i
=
w
{Wg_
: Mean temperature (°C)
LT
<+
6
N Km
-0 60 120
e e B B e e e N B
I144E 1]45°E 14|6°E 147‘“E 148°‘E
v~ November
A = -
e D ‘(/
I N ity i
v AL
g_ d \M ‘K'
? <\,7 A
(O \Qﬁ \
% ).~
. Y.
o
o1
=
" Mean temperature (°C)
wn
DQ‘ 19
B
T Km
0 60 120 &
e e B IR
144°E 145°E 146°E 147°E 148°E

A-

L e B B |

L |

L |

149°E

9 October

40°8
|

a

-

0o
¥
n
Ug_
: Mean temperature (°C) \
w
o, — M 19
<
s
. N 1 Km
-0 60 120
I BLAR AR
‘14-4"E 145°E
v December
o
™

40°S

s

9

=

S

o

<
; Mean temperature (°C)

oM

<
] B
BN 1Km
-0 60 120

144°E 145°E

53

L

146°E

146°E

Ko

(o 2

147°E

RNV I

[

147°E

148°|E
L

[

L

A

L e e B |

L |

149°E

L s B B B B

L B S A B |

(e B

148°E 149°E



_Om_wvﬁ m_omE m°wvﬁ m_om_E m_o__\l _Om_wvﬁ m_omE m°wvﬁ m_om_E m_o__\l
(0[0]3 06 G 0 0 r (0[0]3 06 G 0 0 r
wy I . L wy I . L
-l -l
(4-p ;.w suojoyd i (4-p ;.w suojoyd i
|ow !22e4Ns Mojaq WE) Yvd L |ow !22e4Ns Mojaq WE) Yvd L
| & L&
@? @?
3 S
A A
= =
I I
A - M .
) =)
o o
—- S —- S
( - . Alenuga4 | ( - . Alenuer |
N - w N - w
| © | ©
E— o E— o
[ [

*S191BM Z 9SeD), pallajul sl 98uelo Ul UMoys ‘wg > Yyidep pagesas
alaym seale ale Aaig ul uUMoys *(0Z02) “1e 18 osnues Ag papiaoid sieselep Suisn (,.w) ¥vdy s1us|01)J800 uolienualle agelane pue Yyd 99e4ns Jo (81.02-866 L) ASojo1ewno
RAyiuow uo paseq aoeNs 8yl Mojag WE 18 palewss (,.p ,w suoloyd jow ‘Hyd) uoneipey Aoy AjjeonayiuAsoloyd Ajige)iene ysn AYIUuo — ¥ XiIaNnaddy

54



_Om_wvﬂ m_omE m_on_vﬂ m°wvﬁ m_om_E m_o__\l _Om_wvﬂ m_omE m°wvﬁ m_om_E m_o__\l
(0[0]3 06 G 0 0 r (0[0]3 06 G 0 0 r
wy I . L wy I . L
- N - N
(4-p ;.w suojoyd i (1.p ,.w suojoyd "
|ow !22e4Ns Mojaq WE) Yvd L |ow !22e4Ns Mojaq WE) Yvd L
S S
| | S
@? @?
I » I »
] ]
A A
2 2
I I
g S
I‘ = 5
" n n
( Qv L jHdy ( yoaep
w N w
| © | ©
o — o
[ [

(penunUO92) ¥ XIANAddY

55



_Om_wvﬁ m_omE m_om_vﬁ m_omwvﬁ m_om_E m_i_\l _Om_wvﬁ m_omE m_om_vﬁ m_omwvﬁ m_om_E m_i_\l

(0[0]3 06 G 0 0 r (0[0]3 06 G 0 0 r

wy I . L wy I . L

a B a B

(4-p ;.w suojoyd i (1.p ,.w suojoyd "

|ow !22e4Ns Mojaq WE) Yvd L |ow !22e4Ns Mojaq WE) Yvd L
S S
| | S
@? @?
I » I »
] ]
A A
2 2
I I
s | @ |
" S " S

R /4 i D L

\ | sung \J | Aew

{ w { w
| © | ©
o — o
[ [

(penunUO92) ¥ XIANAddY

56



_Om_wvﬁ m_omE m_om_vﬁ m_ome m_om_E m_o__\l _Om_wvﬁ m_omE m_om_vﬁ m_ome m_om_E m_o__\l

(0[0]3 06 G 0 0 r (0[0]3 06 G 0 0 r

wy I . L wy I . L

a B a B

(4-p ;.w suojoyd i (4-p ;.w suojoyd i

|ow !22e4Ns Mojaq WE) Yvd L |ow !22e4Ns Mojaq WE) Yvd L
S S
| | S
@? @?
I » I »
] ]
A A
= =
I I

, N ,

At |3 P -3
" S " S

N i " L

( 1 isnbny ( | Aing

{ w { w
| © | ©
o — o
[ [

(penunUO92) ¥ XIANAddY

57



_om_wvﬂ m_ome m_owvﬁ m_om_E m_o__uvﬁ _om_wvﬂ m_ome m_owvﬁ m_om_E m_o__uvﬁ
(0[0]3 06 G 0 0 r .v (0[0]3 06 G 0 0
wy I . L [ wy I .

- I

(4-p ;.w suojoyd
Jow {20eNns mojaq WE) ¥yd

2
L

13g0320

 {

So€b

SobE

- I

(4-p ;.w suojoyd
Jow {20eNns mojaq WE) ¥yd

@
L4

Jaquiaadas

(penunUO92) ¥ XIANAddY

So€b

Solb

SobE

58



m_om_E m_o__uvﬁ

m_om_E m_o__uvﬁ

- <

00l 05 s 0
wy I .
m¢-

?.ﬁ 2w suojoyd
|ow !22e4Ns Mojaq WE) Yvd

£
U

Jagquia2ag

So€b

SobE

00} 0§ G¢ O 0 "
wy I . L

|

(4-p ;.w suojoyd i
|ow ‘oeyns mojRq We) Yvd L

So€b

Solb

2D
W

13GUISAON

[
SobE

(penunuUo92) ¥ XIAN3Iddy

59



	Acknowledgements
	Executive Summary
	Introduction
	Section 1: Contemporary distribution of seaweeds of interest in Tasmania
	1.1 Rationale
	1. 2 Methods
	1. 3 Results

	Section 2: Key biophysical attributes
	2.1 Rationale
	2.2 Methods
	1.3 Results

	Section 3: Preliminary spatial assessment of biophysical variables and data gaps
	3.1 Rationale
	3.2 Methods
	3.3 Results

	Section 4: Spatial synthesis of distribution and biophysical conditions
	Summary and recommendations
	References
	Appendix 1 – References (seaweed occurrence data from the literature)
	Appendix 2 – Distribution of seaweed taxa of interest in Tasmania
	Appendix 3 – Monthly sea surface temperature in Tasmania (2014-23)

